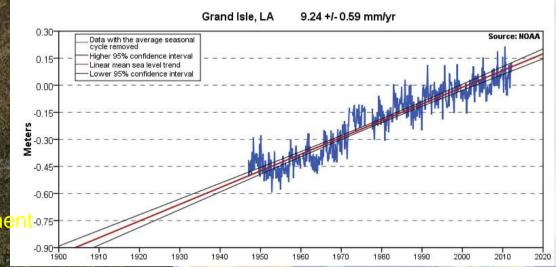
RSM New Orleans District

Cherie Price Jay Ratcliff


US Army Corps of Engineers
BUILDING STRONG®

Description/Challenge

- Louisiana Coast Vital to Nation
 - ▶ 25% Continental US Fisheries
 - ➤ 28% US Entergy (oil, gas)
 - ▶ 41% US Oil Refining Capability
- Rapid Wetland Loss and SLR
- Critical Need for sediments Coastal Restoration
- Highly complex ecosystem and sedimer dynamics

Goals/Issues to Address

- Quantify understanding of sediment transport and pathways through the coastal zone
- Primary forces affecting sediment input, transport, and movement – winds, waves, deltaic cycles, etc.
- Validate and update Conceptual Budget
- Benefits to Coastal Restoration Projects
 - MRHDMS, LCA, CPRA, River Diversions

District PDT Members

Cherie Price, Planning, Coastal Jay Ratcliff, ERDC Coastal & Hydraulics Del Britsch, Engineering, Geotechnical Steve Ayres, Engineering, H&H Andre Dehaan, Engineering, Geospatial

Stakeholders and Partners

Louisiana Coastal Protection Restoration Authority University of New Orleans USGS ERDC-CHL

Leveraging/Collaborative Opportunities

Stakeholders / Partners - Data sets – bathymetry, vibra cores, borings, sediments, water levels, etc.

Projects – LCA, MRHDMS, Louisiana Barrier Island Comprehensive Modeling Program

Milestones/Deliverables

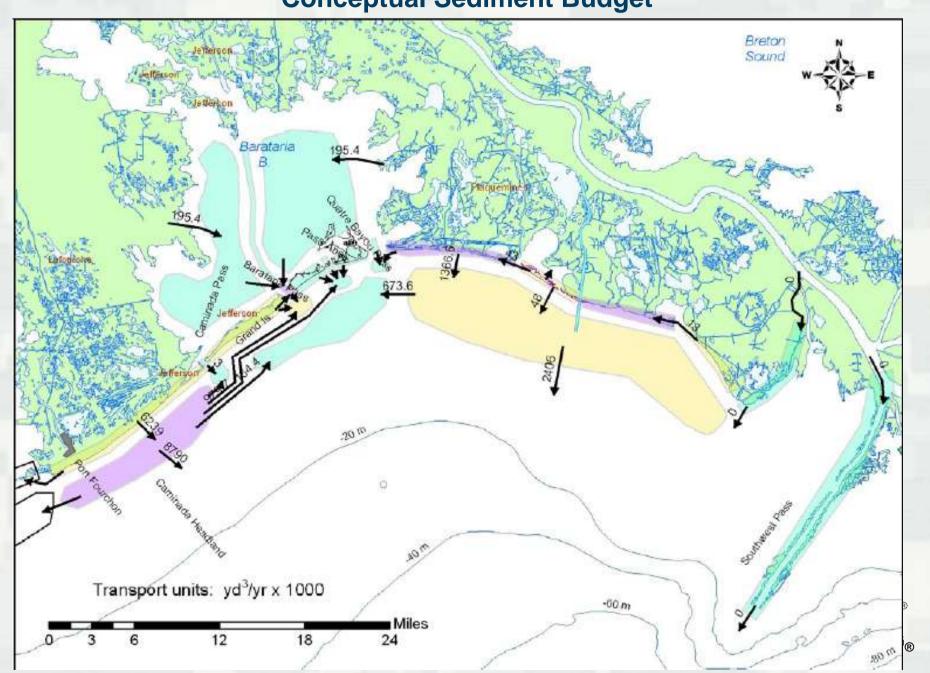
Conceptual Sediment Budget – 100%complete
Acquire Site morphology - 100%complete
Acquire Topo/Bathy - 100%complete
Acquire Sediment Data sets - 80%complete
Coastal Change Data Acquire – 100%complete
Numerical Modeling – 70%complete
FY12 RSM Final Report – 50%complete

Approach

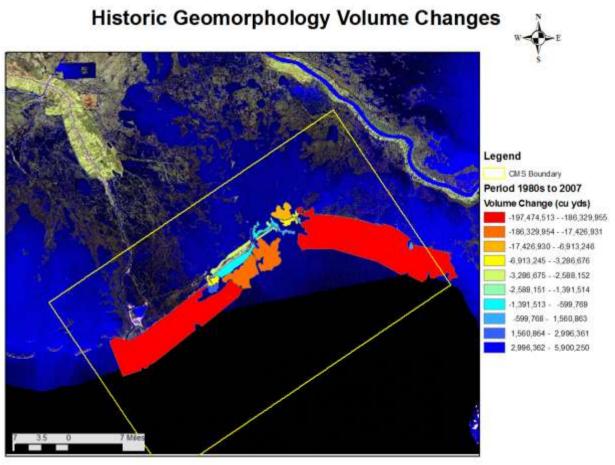
- Create Conceptual Sediment Budget
- Define spatial focus area
- Acquire needed data sets
- Create Numerical (CMS) Model
- Apply Model Results

Benefits to O&M, FRM, Environmental

- Quantify sediment and validate pathways
- Identify primary force components
- Establish transport pathways which can be used in alternative analyses –
 - Reduce costs
 - Implement efficient engineering
- Provide critical data to river diversion and ecosystem restoration USACE and CRPA efforts

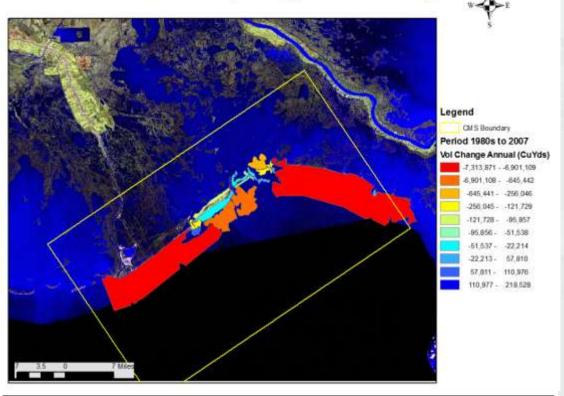


Models, Tools, Databases, etc Used


- 1830 2007/8 Coastal Change database
- Conceptual SBAS Model
- USACE, State of Louisiana, USGS coastal and sediment databases
- CMS Numerical Model

Conceptual Sediment Budget

Historic Volume Changes 1980s to 2007


- Back Barrier Erosion
 - •7.7 x 10⁶ cu m
 - >50% fines
- Shore face Erosion
 - >300 x 106 cu m
 - 86% fines
- Tidal Inlets Erosion
 - •1.27 x 106 cu m

Annual Historic Volume Changes

	Sand Volume change	Fine Volume change	Total Volume change
	(1980 - 2007) 10 ⁶ m ³ and 10 ⁶ m ³ yr ⁻¹	(1980 - 2007) $10^6 \text{ m}^3 \text{ and } 10^6 \text{ m}^3 \text{ yr}^{-1}$	(1980 - 2007) 10 ⁶ m ³ and 10 ⁶ m ³ yr ⁻¹
Geomorphic unit	10° m³ and 10° m³ yr⁻¹	10° m³ and 10° m³ yr⁻¹	10° m³ and 10° m³ yr⁻¹
		•	•
Backbarrier	-3.42, -0.13 (44.2 %)	-4.31, -0.16 (55.8 %)	-7.72, -0.29
Ebb Tidal Delta	-8.27, -0.31 (61.9 %)	-5.08, -0.19 (38.1 %)	-13.35, -0.49
Shoreface	-43.78, -1.62 (14.0 %)	-267.89, -9.92 (86.0 %)	-311.67, -11.54
Spit Platform	N/A*	N/A*	0.24, 0.01
Tidal Inlet	-1.73, -0.06 (135.7 %)	0.45, 0.02 (-35.7 %)	-1.27, -0.05

Numerical Modeling with Coastal Modeling System (CMS)

- Goals and Objectives
 - ► Quantify the volume and rate of sediment transport through the Barataria Estuary Barrier Islands
 - Separated into sand and fine fractions
 - Compute average annual rates
 - Compute quantities and rates during storm events
 - ► Estimate long term morphology change
 - ► Validate / Update Conceptual Sediment Budget
 - Update erosion / deposition by geomorphologic unit
 - ► Identify primary drivers including winds, tides, and wave components

Numerical Modeling with Coastal Modeling System (CMS)

- Methodology
 - ► Model Setup / Geometry
 - Existing Conditions
 - ▶ Topographic and bathymetry elevations derived from current high resolution ADCIRC mesh (HSSDRS/FEMA model)
 - Historic Conditions
 - ▶ Validation
 - Tide Simulations 2008 validated to NOAA/LSU gages
 - Hurricane Gustav 2008 water level observations
 - Hurricane Gustav 2008 wave observations and ADCIRC / STWAVE numerical modeling
 - ▶ Sediment Transport

 Extract sand and fines fractions as well as multiple grain sizes from large boring and vibra core data sets

Numerical Modeling with Coastal Modeling System (CMS)

Cartesian Grid Module | Map Module | Mesh Module | Scatter Module | Raster Module |

 Number of cells:
 186998

 Number of rows:
 259

 Number of columns:
 722

 Number of subgrids:
 0

Number of monitoring stations: 4

Number of ocean cells: 186998

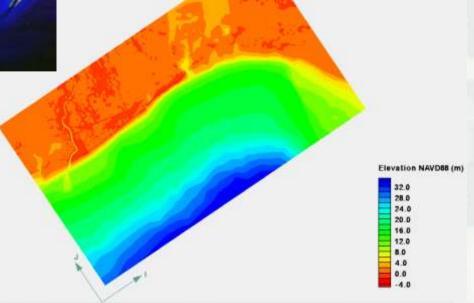
Number of land cells: 0

Minimum Z value: -4.97

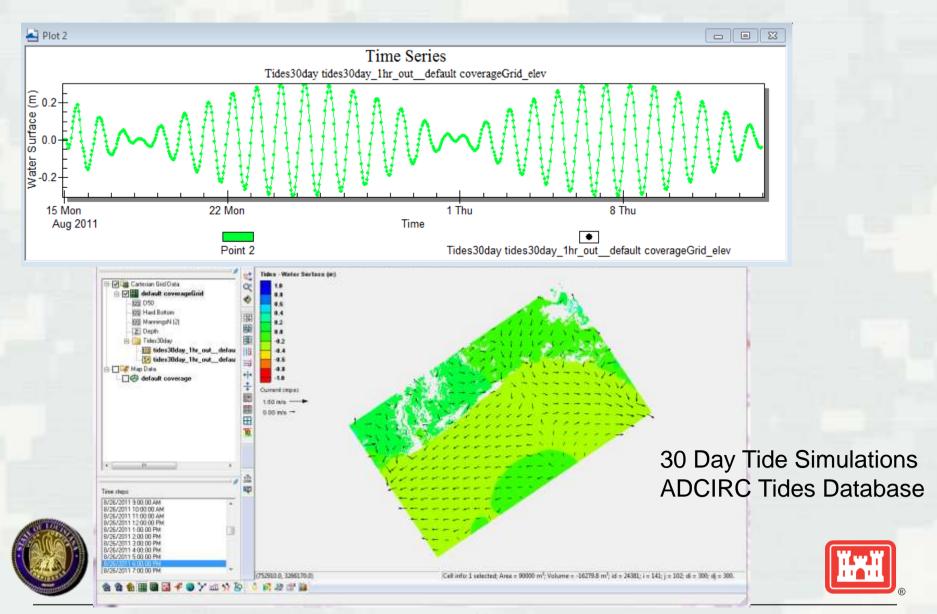
Maximum Z value: 35.43

Angle: 34.06

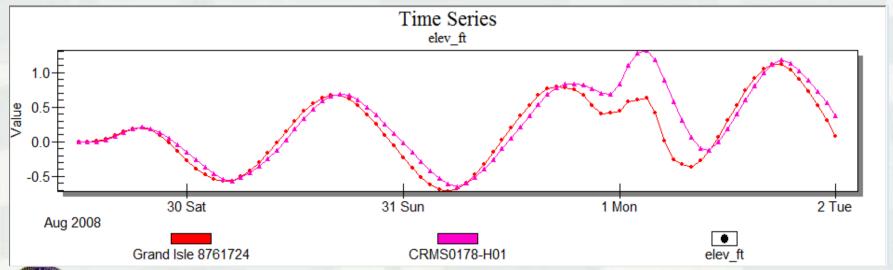
Minimum row height: 28.58


Maximum row height: 299.43

Minimum column width: 100.00

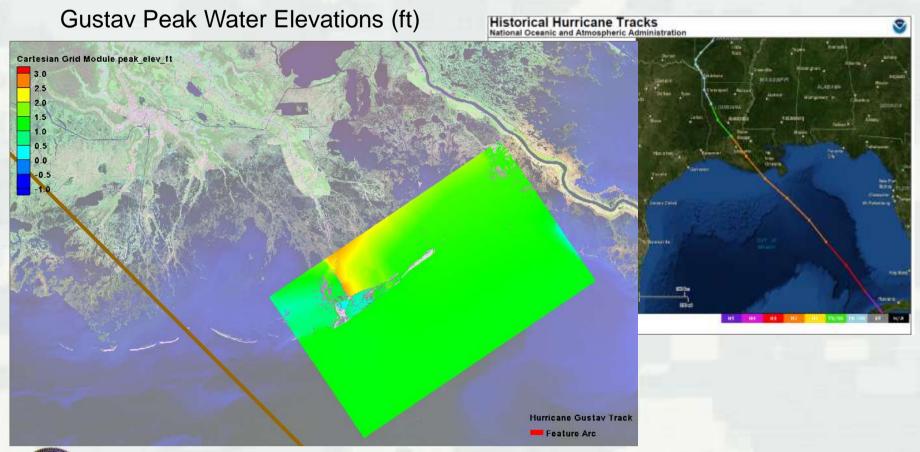

Maximum column width: 100.00

CMS Model Domain Existing Conditions Geometry



CMS Validation Tide Simulations

CMS Validation Hurricane Gustav


- Time Period 29 August to 3 September 2008
 - ▶ 6 day simulation
- DT = 1.0 sec
- Ocean Weather, Inc "Best" Wind speed and pressure
- Grand Isle and USGS, CPRA, NOAA Tide Gages

CMS Validation Hurricane Gustav

CMS Sediment Transport

Data Sources

- ▶ USACE New Orleans District, USGS, Louisiana CPRA LASARDS, University of New Orleans
- ➤ Sand and Fines Geotechnical Borings and Vibra Cores provide sediment characteristics including grain sizes and depths
- Sediment Transport Evaluations
 - ▶ Both Single and multiple grain sizes
 - ▶ Non Equilibrium Total Transport
 - ▶ Equilibrium Transport
 - Lund-CIRP
 - Soulsby-van Rijn Total-load Transport Formula

CMS Sediment Transport

UNO and State of Louisiana LASARD Data Sources

Opportunities to take action:

- Continue expansion of coastal change data
- Leverage ongoing coastal projects
 - LCA, River Diversions, MRHDMS
- Use Data sets and Numerical Models for alternative analyses in USACE projects and CPRA Coastal Master Plans
- Integrate CMS model into MRHDMS modeling
- Integrate dredge operations

Accomplishments

- Creation of Coast wide Conceptual Budget
- Creation of Coastal Change Database
- Creation of First Numerical Modeling Tool
 - Specific to regional sediment modeling
- Results to provide model based volumes and rates to update Conceptual Budget

Volume of Sediment Moved

- Volumes by Geomorphic Unit (average annual)
- Shore-face
 - Conceptual Budget ~ -11.1 x 10⁶ cu-yards
 - UNO Historic ~ 15.1 x 10⁶ cu-yards
 - CMS Modeling on going computations
- Tidal Inlets, Back Barrier next steps

Lessons Learned

- Stakeholders and Partners need to be continually engaged in all efforts
- Interagency collection, processing, and sharing of data sets critically important
- Important to continue to build data sets as well as numerical models to address complex ecosystem and coastal challenges